Reduction Emission Level of Harmful Components Exhaust Gases by Means of Control of Parameters Influencing on Spraying Process of Biofuel Components for Aircraft Engines
نویسنده
چکیده
The aim of the research is to test the fuel additives which decrease dimensions of atomised fuel drops, by applying changes to the specific parameters which impact the atomisation process. Those parameters include density, surface tension, viscosity and the viscosity index. Dimensions of drops of biofuels are much bigger compared to hydrocarbon fuels. By modifying the physical and chemical parameters of biofuels, dimensions of drops in an atomised fuel stream should become smaller. Those dimensions play a major role for the level of emissions of hydrocarbon and carbon monoxide, as well as mainly nitrogen oxides and particulates. The research on emissions of toxic components of fuel is relatively advanced today in the field of piston combustion engines, especially for use in car vehicles. However, the dynamic development of the air transport brings more pressure on the issue of toxic emissions in the case of aircraft engines. The level of toxic emissions from aircraft engines may be from ten up to even several thousand times greater than the level of emissions from piston engines. The issue of how biofuel additives can affect the process of fuel atomisation and thus enable the control over the atomisation to obtain the smallest possible drops leading to reduced nitrogen oxides emissions is a new and original issue. The reduced nitrogen oxides emissions in the case of biofuels is of utmost significance because, according to latest knowledge, those levels are increasing.
منابع مشابه
Modeling of Combustion and Carbon Oxides Formation in Direct Injection Diesel Engine
When looking at the effects of diesel engine exhaust on the environment, it is important to first look at the composition of the exhaust gases. Over 99.5% of the exhaust gases are a combination of nitrogen, oxygen, carbon dioxide, and water. With the exception of carbon dioxide, which contributes about 5% of the total volume, the diesel engine exhaust consists of elements which are part of...
متن کاملThe Theoretical and Experimental Investigation of the Effect of Variation of Thermodynamical Parameters of Egr fluid on No Emissions in S I Engines
Exhaust Gas Recirculation (EGR) concept is the most simple and Abstract more economical method for NO pollutant reduction in spark ignition engines. However, when the higher amount of the EGR gas enters into the engine, the power, torque and fuel economy of the engine decrease. One effective solution for reduction of undesirable effect of this method is to use cooled EGR, that results in more r...
متن کاملA New Strategy for Reduction of Emissions and Enhancement of Performance Characteristics of Dual Fuel Engines at Part Loads
Increasingly restrictive emission regulations and renewed focus on energy efficiency drive the current researches to find alternative fuels and their related better combustion strategies. In this regard, dual fuel engines, in which natural gas fuel is used as a main fuel and diesel fuel is employed as a pilot fuel, have received considerable attention. However, poor fuel utilization efficiencie...
متن کاملModification of piston bowl geometry and injection strategy, and investigation of EGR composition for a DME-burning direct injection engine
The amount of pollutant gases in the atmosphere has reached a critical state due to an increase in industrial development and the rapid growth of automobile industries that use fossil fuels. The combustion of fossil fuels produces harmful gases such as carbon dioxide, nitrogen monoxide (NO), soot, particulate matter (PM), etc. The use of Dimethyl Ether (DME) biofuel in diesel engines or other c...
متن کاملInvestigation of the Effect of Exhaust Gas Recirculation (EGR) on pollutants Emission From Si Engine Exhaust Gasese (RESEARCH NOTES)
This paper reports the results of an experimental investigation on the effect of the EGR on the pollutants emission, especially on oxides of nitrogen, from the exhaust gases and performance of the spark ignition engine. Also along with experimental work, a mathematical model for the determination of the effect of EGR on the peak cycle temperature and for the prediction of its effect on the NOx ...
متن کامل